

Technical Specification

Military COTS AC Line Filter

85 to 264Vrms

Input Voltage 9Arms

Output Current

1kW @ 115Vrms 2kW @ 230Vrms

Output Power

195mΩ @ 100°C

Max Series Resistance >55dB @ 250kHz

Differential & Common-mode Attenuation

Full Power Operation: -55°C to +100°C

MCOTS series of EMI AC Line Filters brings SynQor's field proven technology and manufacturing expertise to the military and aerospace power applications marketplace. SynQor's innovative packaging approach ensures survivability in the most hostile environments. Compatible with the industry standard format, these filters have high differential-mode and common-mode attenuation and low series resistance. They follow conservative component derating guidelines and they are designed and manufactured to the highest standards.

Operational Features

- -55°C to +100°C Operation
- 9Arms output current
- Very low series resistance
- >55dB @ 250kHz Differential & Common-mode Attenuation
- All capacitors are safety-rated X7R multi-layer ceramic
- Meets common EMC standards in properly designed system with SynQor's MPFC module and MCOTS 270 converters
- 400Hz and 50/60 Hz versions

Compliance Features

MACF Series filters (with MPFC & MCOTS converters) are designed to meet:

- MIL-STD-461 for EMC
- MIL-STD-1399
- MIL-STD-704

Safety Features

- 2150Vdc input-to-case & input-to-gnd-pin high-potential test
- Safety rated class X2 line-to-line & class Y2 line-to-gnd capacitors
- Certified 60950-1 requirement for basic insulation

MACF-060-230-HT-N-M Module

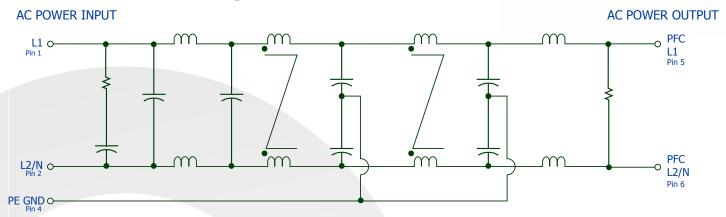
Mechanical Features

- Standard Size: 2.49" x 2.39" x 0.51" (63.1 x 60.6 x 13mm)
- Total weight: 5.0oz (142g)
- Flanged baseplate version available

In-Line Manufacturing Process

- AS9100 and ISO 9001 certified facility
- Full component traceability

Contents


	Page No.
Technical Diagrams	2
Electrical Characteristics	3
Basic Operations and Features	4
Standards & Qualification Testing	5
Encased Mechanical Diagram	7
Flanged Mechanical Diagram	
Ordering Specifications	9

Technical Specification

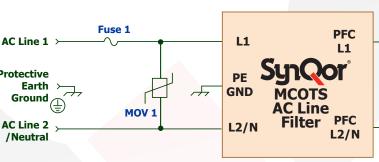
Technical Diagrams

Fundamental Circuit Diagram

TVS 1

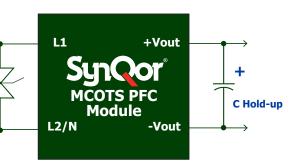
Typical Connection Diagram

AC POWER INPUT


85 - 264 Vac

Protective Earth

Ground


AC Line 2

/Neutral

DC POWER OUTPUT

390 Vdc

MOV 1: 300VAC, 60J; (EPCOS S10K300E2)

TVS 1: 400V, 3J; (Two VISHAY 1.5KE200CA devices connected in series) C Hold-up: 450V, 390µF; (United Chemi-Con ELXS451VSN391MR50S)

Fuse 1: 250VAC, 12.5A; (Littelfuse 021612.5MXEP)

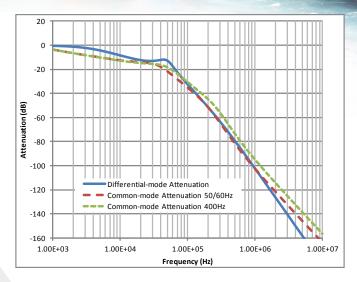
Technical Specification Specif

MACF-xxx-230-HT Electrical Characteristics

Vin <= 264Vrms, Iout <= 9Arms unless otherwise specified. Specifications subject to change without notice.

LUTE MAXIMUM RATINGS Voltage (Continuous)		Тур.	•		
Voltage (Continuous)					
10.000			264	Vrms	
on Voltage			2150	Vdc	Input/output to PE GND pin & baseplate
t Current (Continuous)			9	Arms	
t Current (Surge)			400	A ² S	
ting Case Temperature	-55		100	°C	Baseplate temperature
e Case Temperature	-65		135	°C	
MMENDED OPERATING CONDITIONS					
Voltage (Continuous)			250	Vrms	
t Current (Continuous)			9	Arms	
RICAL CHARACTERISTICS					
t Voltage (Continuous)	Vout	= Vin - (Iin	x Rs)	V	
Resistance Rs					Total
se = 25°C		130		mΩ	
se = 100°C			195	mΩ	
Dissipation					9Arms output current
se = 25°C		10.5		W	
se = 100°C			15.8	W	
Differential-Mode Capacitance		1.5		μF	Measured across input or output pins
Common-Mode Capacitance 50/60Hz version	ו	2 x 20		nF	Measured between PE GND pin and any other pin
Common-Mode Capacitance 400Hz version		2 x 8.3		nF	Measured between PE GND pin and any other pin
ge current in PE GND Pin 50/60Hz version			1.9	mArms	250Vac L-N 50Hz, See Note 1
ge current in PE GND Pin 400Hz version			2.8	mArms	115Vac L-N 400Hz, See Note 1
Attenuation					See Figure 1
on Resistance	100			MΩ	Any pin to PE GND pin
ABILITY CHARACTERISTICS					
ated MTBF (MIL-217) MIL-HDBK-217F		5.9		10 ⁶ Hrs.	Ground Benign, Tb = 70 °C
ated MTBF (MIL-217) MIL-HDBK-217F		0.339		10 ⁶ Hrs.	Ground Mobile, Tb = 70 °C
Demonstrated MTBF				10 ⁶ Hrs.	See our website for details

Note 1: If the neutral line is interrupted, leakage current may reach twice this level.


Technical Specification

BASIC OPERATION AND FEATURES


This module is a multi-stage differential-mode and common-mode passive EMI filter designed to interface an AC power source with a SynQor MCOTS PFC module and one or more SynQor converters (or other loads that create EMI). Each stage of this filter is well damped to avoid resonances and oscillations, and only X7R multi-layer ceramic safety rated capacitors are used

A typical application would place the MCOTS AC line filter close to the AC input power entry point. The AC Line Filter GND pin would be connected to the chassis ground that is common with AC input power protective earth (PE GND) or other earthed point used for EMI measurement. There are no connections to the metal baseplate, which may also be connected to the chassis ground if desired.

Do not connect the outputs of multiple MCOTS AC line filters in parallel. Connecting filters in this manner may result in slightly unequal currents to flow in the positive and return paths of each filter. These unequal currents will cause the internal common-mode chokes to saturate and thus cause degraded common-mode rejection performance.

Figure 1: Typical Common Mode and Differential Mode Attenuation provied by the filter as a function of frequency. Source and load resistance are 50Ω .

Figure 2: Typical Common Mode and Differential Mode Attenuation provied by the filter as a function of frequency. Source and load resistance are 50Ω .

Technical Specification

Standards & Qualification Testing

Mil-COTS MIL-STD-810G Qualification Testing

MIL-STD-810G Test	Method	Description Qualification resting
Fungus	508.6	Table 508.6-I
Altitude	500.5 - Procedure I	Storage: 70,000 ft / 2 hr duration
Aititude	500.5 - Procedure II	Operating: 70,000 ft / 2 hr duration; Ambient Temperature
Rapid Decompression	500.5 - Procedure III	Storage: 8,000 ft to 40,000 ft
Acceleration	513.6 - Procedure II	Operating: 15 g
Salt Fog	509.5	Storage
High Temperature	501.5 - Procedure I	Storage: 135 °C / 3 hrs
nigh Temperature	501.5 - Procedure II	Operating: 100 °C / 3 hrs
Low Temperature	502.5 - Procedure I	Storage: -65 °C / 4 hrs
Low remperature	502.5 - Procedure II	Operating: -55 °C / 3 hrs
Temperature Shock 503.5 - Procedure I - C		Storage: -65 °C to 135 °C; 12 cycles
Rain	506.5 - Procedure I	Wind Blown Rain
Immersion	512.5 - Procedure I	Non-Operating Non-Operating
Humidity	507.5 - Procedure II	Aggravated cycle @ 95% RH (Figure 507.5-7 aggravated temp - humidity cycle, 15 cycles)
Random Vibration	514.6 - Procedure I	10 - 2000 Hz, PSD level of 1.5 g ² /Hz (54.6 g _{rms}), duration = 1 hr/axis
Shock	516.6 - Procedure I	20 g peak, 11 ms, Functional Shock (Operating no load) (saw tooth)
SHOCK	516.6 - Procedure VI	Bench Handling Shock
Sinusoidal vibration	514.6 - Category 14	Rotary wing aircraft - helicopter, 4 hrs/axis, 20 g (sine sweep from 10 - 500 Hz)
Sand and Dust	510.5 - Procedure I	Blowing Dust
Janu and Dust	510.5 - Procedure II	Blowing Sand

Mil-COTS Converter and Filter Screening

Screening	Process Description	S-Grade	M-Grade
Baseplate Operating Temperature		-55 °C to +100 °C	-55 °C to +100 °C
Storage Temperature		-65 °C to +135 °C	-65 °C to +135 °C
Pre-Cap Inspection	IPC-A-610, Class III	•	•
Temperature Cycling	MIL-STD-883F, Method 1010, Condition B, 10 Cycles		•
Burn-In	100 °C Baseplate	12 Hours	96 Hours
Final Electrical Test	100%	25 °C	-55 °C, +25 °C, +100 °C
Final Visual Inspection	MIL-STD-883F, Method 2009	•	•

Technical Specification

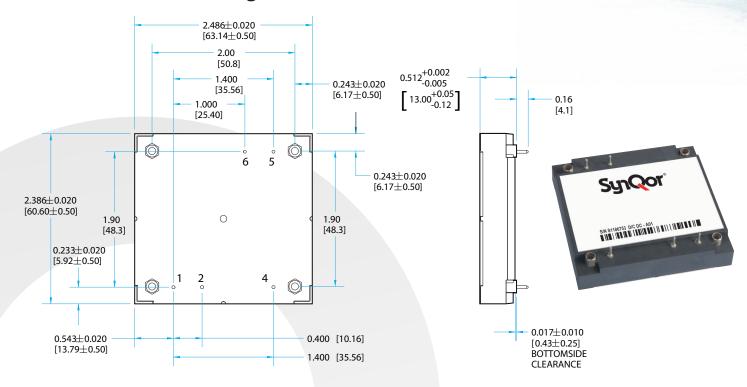
Parameter	Notes & Conditions	
STANDARDS COMPLIANCE		
UL 60950-1	Basic Insulation	
CAN/CSA-C22.2 No. 60950-1		
EN60950-1	Certified by TUV	

All Filter versions meet EN60950-1 leakage current requirements with a 250Vrms L-N 50/60Hz input.

The 400Hz filter version also meets EN60950-1 leakage current requirements with a 115 Vrms L-N 400Hz input but not with a 250Vrms L-N 400Hz input. Note: An external input fuse must always be used to meet these safety requirements, see the Typical Connection Diagram.

Contact SynQor for official safety certificates on new releases or download from the SynQor website.

Parameter	# Units	Test Conditions
QUALIFICATION TESTING		
Life Test	32	95% rated Vin and load, units at derating point, 1000 hours
Vibration	5	10-55 Hz sweep, 0.060" total excursion, 1 min./sweep, 120 sweeps for 3 axis
Mechanical Shock	5	100g minimum, 2 drops in x, y, and z axis
Temperature Cycling	10	-55 °C to 100 °C, unit temp. ramp 15 °C/min., 500 cycles
Power/Thermal Cycling	5	Toperating = min to max, Vin = min to max, full load, 100 cycles
Design Marginality	5	Tmin-10 °C to Tmax+10 °C, 5 °C steps, Vin = min to max, 0-105% load
Humidity	5	85 °C, 95% RH, 1000 hours, continuous Vin applied except 5 min/day
Solderability	15 pins	MIL-STD-883, method 2003
Altitude	2	70,000 feet (21 km), see Note


Note: A conductive cooling design is generally needed for high altitude applications because of naturally poor convective cooling at rare atmospheres.

Product # MACF-xxx-230-HT

Technical Specification

Encased Mechanical Diagram

NOTES

- 1) Applied torque per screw should not exceed 6in-lb. (0.7 Nm).
- 2) Baseplate flatness tolerance is 0.004" (.10 mm) TIR for surface.
- Pins are are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- 4) All Pins: Material Copper Alloy

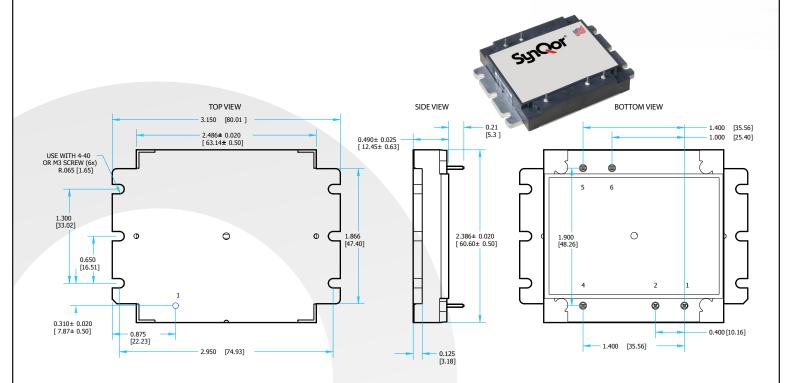
Finish: Matte Tin over Nickel plate

- 5) Undimensioned components only for visual reference.
- 6) Total weight: 5.0oz (142g)
- 7) Threaded and Non-Threaded options available
- 8) All dimensions in inches (mm)

Tolerances: x.xx + /-0.02 in. (x.x + /-0.5mm)

x.xxx + /-0.010 in. (x.xx + /-0.25mm)

- unless otherwise noted.
- 9) Workmanship: Meets or exceeds current IPC-A-610 Class II


PIN DESIGNATIONS

Pin	Name	Function
1	L1	AC Line 1
2	L2/N	AC Line 2 / Neutral
4	PE GND	Protective Earth
5	PFC L1	PFC Input Line 1
6	PFC L2/N	PFC Input Line 2 / Neutral

Technical Specification

Flanged Mechanical Diagram

NOTES

- 1) Applied torque per screw should not exceed 6in-lb. (0.7 Nm).
- 2) Baseplate flatness tolerance is 0.004" (.10 mm) TIR for surface.
- 3) Pins are are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- 4) All Pins: Material Copper Alloy

Finish: Matte Tin over Nickel plate

- 5) Undimensioned components only for visual reference.
- 6) Weight: 5.2oz (148g)
- 7) All dimensions in inches (mm)

Tolerances: x.xx + /-0.02 in. (x.x + /-0.5mm)

x.xxx +/-0.010 in. (x.xx +/-0.25mm)

- unless otherwise noted.

8) Workmanship: Meets or exceeds current IPC-A-610 Class II

PIN DESIGNATIONS

Pin	Name	Function
1	L1	AC Line 1
2	L2/N	AC Line 2 / Neutral
4	PE GND	Protective Earth
5	PFC L1	PFC Input Line 1
6	PFC L2/N	PFC Input Line 2 / Neutral

Ordering Specifications

Family	Input Frequency	Input Voltage	Package	Thermal Design	Screening Level
MACF	060	230	HT	N	S
MACF: AC Line Filter		230: 85 to 264Vrms	HT: Half-Brick Tera	N: Encased Threaded	S: Standard M: Military
	060: 50/60 Hz 400: 400 Hz			D: Non-Threaded	
	400 112			F: Flanged	

Part Number Example: MACF-060-230-HT-N-M

APPLICATION NOTES

A variety of application notes and technical white papers can be downloaded in pdf format from our website.

ORDERING INFORMATION

Not all combinations make valid part numbers, please contact SynQor for availability.

Contact SynQor for further information and to order:

Phone:978-849-0600Toll Free:888-567-9596Fax:978-849-0602

E-mail:power@synqor.comWeb:www.synqor.comAddress:155 Swanson Road

Boxborough, MA 01719

USA

PATENTS

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws. SynQor's patents include the following:

5,999,417	6,222,742	6,545,890	6,594,159	6,894,468	6,896,526
6,927,987	7,050,309	7,072,190	7,085,146	7,119,524	7,269,034
7,272,021	7,272,023	7,558,083	7,564,702	7,765,687	7,787,261
8,023,290	8,149,597	8,493,751	8,644,027	9,143,042	

Warranty

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.

Product # MACF-xxx-230-HT Phone 1-888-567-9596 www.syngor.com Doc.# 005-0006475 Rev. B 10/19/2016 Page 9